

CERTIFICATE OF ACCREDITATION

SGS TEC Services, Inc.

in

Lawrenceville, Georgia, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Quality Management System

Standard:

Accredited Since:

R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	12/15/2004
ISO/IEC 17025	General Requirements for the Competence of Testing and Calibration Laboratories	06/01/2010
C1077 (Aggregate)	Laboratories Testing Concrete and Concrete Aggregates	01/10/2011
C1077 (Concrete)	Laboratories Testing Concrete and Concrete Aggregates	01/10/2011
C1222 (Cement)	Evaluation of Laboratories Testing Hydraulic Cement	01/10/2011
E329 (Aggregate)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	08/12/2014
E329 (Concrete)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	08/12/2014

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Rock

Standard:

Accredited Since:

D5240 Evaluation of Durability of Rock for Erosion Control Using Sodium Sulfate or Magnesium Sulfate

05/31/2017

D5312 Evaluation of Durability of Rock for Erosion Control Under Freezing and Thawing Conditions

05/31/2017

D5313 Durability of Rock for Erosion Control Under Wetting and Drying Conditions

05/31/2017

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Aggregate

Standard:

Accredited Since:

T335	Determining the Percentage of Fractured Particles in Coarse Aggregate	07/18/2022
C29	Bulk Density ("Unit Weight") and Voids in Aggregate	12/15/2004
C40	Organic Impurities in Fine Aggregates for Concrete	12/15/2004
C88	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	01/01/2011
C117	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	12/15/2004
C123	Lightweight Pieces in Aggregate	08/12/2014
C127	Specific Gravity and Absorption of Coarse Aggregate	12/15/2004
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	12/15/2004
C131	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	12/15/2004
C136	Sieve Analysis of Fine and Coarse Aggregates	06/02/2011
C142	Clay Lumps and Friable Particles in Aggregate	12/15/2004
C295	Petrographic Examination of Aggregates for Concrete	02/07/2017
C535	Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	12/15/2004
C566	Total Moisture Content of Aggregate by Drying	12/15/2004
C641	Iron Staining Materials in Lightweight Concrete Aggregates	08/12/2014
C702	Reducing Samples of Aggregate to Testing Size	12/15/2004
C1252	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	08/12/2014
D75	Sampling Aggregate	08/12/2014
D2419	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	07/09/2019
D4791	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	08/12/2014
D5821	Determining the Percentage of Fractured Particles in Coarse Aggregate	02/07/2017
CRD-C130	Estimating Scratch Test Hardness of Coarse Aggregate Particles	07/09/2019

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Iron and Steel

Standard:

Accredited Since:

A615-A370 Carbon-Steel Bars, Deformed and Plain: Tension (Elongation)	02/07/2017
A615-A370 Carbon-Steel Bars, Deformed and Plain: Tension (Ultimate Tensile Strength)	02/07/2017
A615-A370 Carbon-Steel Bars, Deformed and Plain: Tension (Yield Strength)	02/07/2017
A615-E290 Carbon-Steel Bars, Deformed and Plain: Bend Test	07/09/2019
A706-A370 Low Alloy Steel Bars, Deformed and Plain: Tension (Elongation)	02/07/2017
A706-A370 Low Alloy Steel Bars, Deformed and Plain: Tension (Ultimate Tensile Strength)	02/07/2017
A706-A370 Low Alloy Steel Bars, Deformed and Plain: Tension (Yield Strength)	02/07/2017
A706-E290 Low Alloy Steel Bars, Deformed and Plain: Bend Test	07/09/2019

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.
in Lawrenceville, Georgia, USA

Cementitious Material - Chemical Tests

Standard:**Accredited Since:**

C114 Aluminum Oxide – X-Ray Fluorescence	02/07/2017
C114 Calcium Oxide – X-Ray Fluorescence	02/07/2017
C114 Carbon Dioxide – Leco Furnace	02/10/2026
C114 Chloride – Reference	02/10/2026
C114 Ferric Oxide – X-Ray Fluorescence	02/07/2017
C114 Insoluble Residue – Reference	02/07/2017
C114 Loss on Ignition – LECO Furnace	02/10/2026
C114 Magnesium Oxide – X-Ray Fluorescence	02/07/2017
C114 Manganic Oxide – X-Ray Fluorescence	02/07/2017
C114 Phosphorus Pentoxide – X-Ray Fluorescence	02/07/2017
C114 Potassium Oxide – X-Ray Fluorescence	02/07/2017
C114 Silicon Dioxide – X-Ray Fluorescence	02/07/2017
C114 Sodium Oxide – X-Ray Fluorescence	02/07/2017
C114 Sulfur Trioxide – X-Ray Fluorescence	02/07/2017
C114 Titanium Dioxide – X-Ray Fluorescence	02/07/2017
C114 Zinc Oxide – X-Ray Fluorescence	02/07/2017

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Cement - Physical Tests

Standard:

Accredited Since:

C109	Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Cube Specimens)	12/15/2004
C151	Autoclave Expansion of Hydraulic Cement	12/15/2004
C157	Length Change of Hardened Hydraulic-Cement, Mortar, and Concrete	02/10/2026
C183	Sampling and the Amount of Testing of Hydraulic Cement	12/15/2004
C185	Air Content of Hydraulic Cement Mortar	12/15/2004
C187	Normal Consistency of Hydraulic Cement	12/15/2004
C188	Density of Hydraulic Cement	07/09/2019
C191	Time of Setting of Hydraulic Cement by Vicat Needle	12/15/2004
C204	Fineness of Hydraulic Cement by Air Permeability Apparatus	12/15/2004
C266	Time of Setting of Hydraulic-Cement Paste by Gillmore Needles	02/07/2017
C305	Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	12/15/2004
C348	Flexural Strength of Hydraulic-Cement Mortars	08/12/2014
C430	Fineness of Hydraulic Cement by the 45- μ m (No. 325) Sieve	12/15/2004
C451	Early Stiffening of Hydraulic Cement (Paste Method)	12/15/2004
C452	Potential Expansion of Portland-Cement Mortars Exposed to Portland Cement	02/07/2017
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	02/28/2013
C596	Drying Shrinkage of Mortar Containing Hydraulic Cement	08/12/2014
C1012	Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution	12/15/2004
C1038	Expansion of Hydraulic Cement Mortar Bars Stored in Water	08/12/2014
C1437	Flow of Hydraulic Cement Mortar	12/15/2004
C1506	Water Retention of Hydraulic Cement-Based Mortars and Plasters	12/15/2004
C1702	Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry	06/23/2020

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Concrete

Standard:

Accredited Since:

T336	Coefficient of Thermal Expansion of Hydraulic Cement Concrete	02/09/2017
C31 (Beams)	Making and Curing Concrete Test Specimens in the Field	12/15/2004
C31 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	12/15/2004
C39	Compressive Strength of Cylindrical Concrete Specimens	12/15/2004
C42 (Drilling Cores of Concrete)	Obtaining and Testing Drilled Cores and Sawed Beams of Concrete	12/15/2004
C42 (Testing Drilled Cores of Concrete)	Obtaining and Testing Drilled Cores and Sawed Beams of Concrete	12/15/2004
C78	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	12/15/2004
C87	Effect of Organic Impurities in Fine Aggregate on Strength of Mortar	12/15/2004
C138	Density (Unit Weight), Yield, and Air Content of Concrete	12/15/2004
C143	Slump of Hydraulic Cement Concrete	12/15/2004
C157	Length Change of Hardened Hydraulic-Cement, Mortar, and Concrete	12/15/2004
C172	Sampling Freshly Mixed Concrete	12/15/2004
C173	Air Content of Freshly Mixed Concrete by the Volumetric Method	12/15/2004
C192	Making and Curing Concrete Test Specimens in the Laboratory	12/15/2004
C215	Fundamental Transverse, Longitudinal and Torsional Frequencies of Concrete Specimens	12/15/2004
C227	Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method)	12/15/2004
C231	Air Content of Freshly Mixed Concrete by the Pressure Method	12/15/2004
C232	Bleeding of Concrete	12/15/2004
C293	Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)	08/12/2014
C305	Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	07/18/2022
C403	Time of Setting of Concrete Mixtures by Penetration Resistance	12/15/2004
C418	Abrasion Resistance of Concrete by Sandblasting	08/12/2014
C457	Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete	12/15/2004

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Concrete (Continued)

Standard:

Accredited Since:

C469	Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression	12/15/2004
C496	Splitting Tensile Strength of Cylindrical Concrete Specimens	12/15/2004
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	02/28/2013
C512	Creep of Concrete in Compression	02/28/2013
C567	Determining Density of Structural Lightweight Concrete	12/15/2004
C597	Pulse Velocity Through Concrete	07/09/2019
C617 (10000 psi and below)	Capping Cylindrical Concrete Specimens	02/10/2026
C642	Density, Absorption, and Voids in Hardened Concrete	12/15/2004
C666	Resistance of Concrete to Rapid Freezing and Thawing	12/15/2004
C672	Scaling Resistance of Concrete Surfaces Exposed to De-icing Chemicals	12/15/2004
C779	Abrasion Resistance of Horizontal Concrete Surfaces	07/18/2022
C805	Rebound Number of Hardened Concrete	08/12/2014
C827	Change in Height at Early Ages of Cylindrical Specimens of Cementitious Mixtures	12/15/2004
C856	Petrographic Examination of Hardened Concrete	11/05/2020
C882	Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear	12/15/2004
C884	Thermal Compatibility Between Concrete and an Epoxy-Resin Overlay	07/09/2019
C939	Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)	02/10/2026
C944	Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method	12/15/2004
C1064	Temperature of Freshly Mixed Portland Cement Concrete	12/15/2004
C1074	Estimating Concrete Strength by the Maturity Method	08/12/2014
C1090	Measuring Changes in Height of Cylindrical Specimens of Hydraulic-Cement Grout	04/02/2009
C1105	Length Change of Concrete Due to Alkali-Carbonate Rock Reaction	08/12/2014
C1138	Abrasion Resistance of Concrete (Underwater Method)	02/07/2017

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Concrete (Continued)

Standard:

Accredited Since:

C1140 (Obtaining and Testing Specimens) Preparing and Testing Specimens from Shotcrete Test Panels	07/18/2022
C1152 Acid-Soluble Chloride in Mortar and Concrete	02/09/2017
C1202 Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration	12/15/2004
C1218 Water-Soluble Chloride in Mortar and Concrete	02/09/2017
C1231 (7000 psi and below) Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	02/28/2013
C1260 Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)	12/15/2004
C1293 Determination of Length Change of Concrete Due to Alkali-Silica Reaction	08/12/2014
C1383 Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method	12/15/2004
C1399 Obtaining Average Residual-Strength of Fiber-Reinforced Concrete	12/15/2004
C1437 Flow of Hydraulic Cement Mortar	07/18/2022
C1542 Measuring Length of Concrete Cores	08/12/2014
C1550 Flexural Toughness of Fiber Reinforced Concrete (Using Centrally Loaded Round Panel)	02/07/2017
C1567 Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method)	12/15/2004
C1579 Evaluating Plastic Shrinkage Cracking of Restrained Fiber Reinforced Concrete (Using a Steel Form Insert)	02/09/2017
C1581 Determining Age at Cracking and Induced Tensile Stress	02/28/2013
C1583 Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method)	12/15/2004
C1609 Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)	12/15/2004
C1610 Static Segregation of Self-Consolidating Concrete Using Column Technique	08/12/2014
C1611 Slump Flow of Self-Consolidating Concrete	08/12/2014
C1621 Passing Ability of Self-Consolidating Concrete by J-Ring	08/12/2014
C1712 Rapid Assessment of Static Segregation Resistance of Self-Consolidating Concrete Using Penetration Test	08/12/2014
C1741 Bleed Stability of Cementitious Post-Tensioning Tendon Grout	08/12/2014
G109 Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments	07/09/2019

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Concrete (Continued)

Standard:

Accredited Since:

CRD-C48

Water Permeability of Concrete

07/18/2022

CRD-C61

Determining the Resistance of Freshly Mixed Concrete to Washing Out in Water

07/09/2019

Page 10 of 14

This certificate was generated on 02/12/2026 at 8:09 PM Eastern Time. Please confirm the current accreditation status of this laboratory at aashtoresource.org/aap/accreditation-directory

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Masonry

Standard:

Accredited Since:

C109 Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Cube Specimens)	04/02/2009
C185 Air Content of Hydraulic Cement Mortar	04/02/2009
C305 Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	04/02/2009
C511 Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	02/28/2013
C1437 Flow of Hydraulic Cement Mortar	04/02/2009
C1506 Water Retention of Hydraulic Cement-Based Mortars and Plasters	04/02/2009

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Pozzolan

Standard:

Accredited Since:

C109	Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Cube Specimens)	08/12/2014
C151	Autoclave Expansion of Hydraulic Cement	08/12/2014
C157	Length Change of Hardened Hydraulic-Cement, Mortar, and Concrete	08/12/2014
C185	Air Content of Hydraulic Cement Mortar	02/07/2017
C187	Normal Consistency of Hydraulic Cement	08/12/2014
C188	Density of Hydraulic Cement	08/12/2014
C305	Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	08/12/2014
C311 (Loss on Ignition)	Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete (Loss on Ignition)	07/18/2022
C311 (Moisture Content)	Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete (Moisture Content)	02/10/2026
C430	Fineness of Hydraulic Cement by the 45-µm (No. 325) Sieve	08/12/2014
C441	Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction	08/12/2014
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	08/12/2014
C1012	Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution	08/12/2014
C1437	Flow of Hydraulic Cement Mortar	08/12/2014

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.

in Lawrenceville, Georgia, USA

Slag Cement

Standard:

Accredited Since:

C109 Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Cube Specimens)	08/12/2014
C185 Air Content of Hydraulic Cement Mortar	08/12/2014
C188 Density of Hydraulic Cement	08/12/2014
C204 Fineness of Hydraulic Cement by Air Permeability Apparatus	08/12/2014
C305 Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	08/12/2014
C430 Fineness of Hydraulic Cement by the 45-µm (No. 325) Sieve	08/12/2014
C511 Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	08/12/2014
C1038 Expansion of Hydraulic Cement Mortar Bars Stored in Water	07/09/2019
C1437 Flow of Hydraulic Cement Mortar	08/12/2014

SCOPE OF AASHTO ACCREDITATION FOR:

SGS TEC Services, Inc.
in Lawrenceville, Georgia, USA

Ultra-High Performance Concrete (UHPC)

Standard:

Accredited Since:

C1856 (Sampling)	Sampling Specimens of Ultra-High Performance Concrete	02/10/2026
C1856-C39	Compressive Strength of Cylindrical Ultra-High Performance Concrete Specimens	07/18/2022
C1856-C42	Obtaining Drilled Cores and Sawed Beams of Ultra-High Performance Concrete	07/18/2022
C1856-C157	Length Change of Hardened Ultra-High Performance Concrete	07/18/2022
C1856-C192 (Cylinders)	Making Ultra-High Performance Concrete Test Specimens in the Laboratory (Cylinders)	02/10/2026
C1856-C192 (Prisms)	Making Ultra-High Performance Concrete Test Specimens in the Laboratory (Prisms)	02/10/2026
C1856-C469	Static Modulus of Elasticity and Poisson's Ratio of Ultra-High Performance Concrete in Compression	07/18/2022
C1856-C511	Curing Specimens of Ultra-High Performance Concrete	02/10/2026
C1856-C512	Creep of Ultra-High Performance Concrete in Compression	07/18/2022
C1856-C666	Resistance of Ultra-High Performance Concrete to Rapid Freezing and Thawing	07/18/2022
C1856-C944	Abrasion Resistance of Ultra-High Performance Concrete Surfaces by the Rotating-Cutter Method	07/18/2022
C1856-C1202	Electrical Indication of Ultra-High Performance Concrete's Ability to Resist Chloride Ion Penetration	07/18/2022
C1856-C1609	Flexural Performance of Fiber-Reinforced Ultra-High Performance Concrete (Using Beam With Third-Point Loading)	07/18/2022