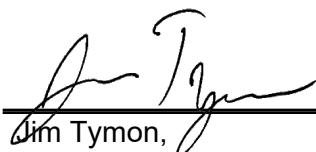


CERTIFICATE OF ACCREDITATION


Trimat Materials Testing, Inc.

in

Durham, North Carolina, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

Trimat Materials Testing, Inc.
in Durham, North Carolina, USA

Quality Management System

Standard:

Accredited Since:

R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	01/08/2009
C1077 (Aggregate)	Laboratories Testing Concrete and Concrete Aggregates	04/12/2017
C1077 (Concrete)	Laboratories Testing Concrete and Concrete Aggregates	04/17/2020
D3666 (Aggregate)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	01/10/2011
D3666 (Asphalt Mixture)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	01/10/2011
D3740 (Soil)	Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction	06/28/2013
E329 (Aggregate)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	05/05/2011
E329 (Asphalt Mixture)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	05/05/2011
E329 (Concrete)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	09/29/2025
E329 (Soil)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	06/28/2013

SCOPE OF AASHTO ACCREDITATION FOR:

Trimat Materials Testing, Inc.
in Durham, North Carolina, USA

Asphalt Mixture

Standard:

Accredited Since:

R68	Preparation of Asphalt Mixtures by Means of the Marshall Apparatus	01/08/2009
T30	Mechanical Analysis of Extracted Aggregate	01/08/2009
T166	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	01/08/2009
T209	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	01/08/2009
T269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	01/08/2009
T283	Resistance of Compacted Mixtures to Moisture Induced Damage	01/08/2009
T308	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	01/08/2009
T312	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	01/08/2009
T340	Determining Rutting Susceptibility of Hot Mix Asphalt (HMA) Using the Asphalt Pavement Analyzer (APA)	07/22/2024
D2041	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	07/22/2024
D2172	Quantitative Extraction of Asphalt Binder from Hot Mix Asphalt (HMA)	07/22/2024
D2726	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	07/22/2024
D3203	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	07/22/2024
D3549	Thickness or Height of Compacted Bituminous Paving Mixture Specimens	09/07/2022
D4867	Resistance of Compacted Mixtures to Moisture Induced Damage	07/22/2024
D5404	Recovery of Asphalt from Solution Using the Rotavapor Apparatus	04/07/2025
D5444	Mechanical Analysis of Extracted Aggregate	07/22/2024
D6307	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	07/22/2024
D6925	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	07/22/2024
D6926	Preparation of Asphalt Mixtures by Means of the Marshall Apparatus	07/22/2024
D6927	Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus	07/22/2024
D8225	Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature	07/22/2024

SCOPE OF AASHTO ACCREDITATION FOR:

Trimat Materials Testing, Inc.
in Durham, North Carolina, USA

Soil

Standard:

Accredited Since:

R58	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	04/14/2011
T88	Particle Size Analysis of Soils by Hydrometer	04/14/2011
T89	Determining the Liquid Limit of Soils (Atterberg Limits)	04/14/2011
T90	Plastic Limit of Soils (Atterberg Limits)	04/14/2011
T99	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	04/14/2011
T100	Specific Gravity of Soils	09/07/2022
T180	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	04/14/2011
T265	Laboratory Determination of Moisture Content of Soils	04/14/2011
D421	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	05/06/2015
D422	Particle Size Analysis of Soils by Hydrometer	05/06/2015
D558	Moisture-Density Relations of Soil-Cement Mixtures	07/22/2024
D559	Wetting-and-Drying Test of Compacted Soil-Cement Mixtures	07/22/2024
D698	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	05/06/2015
D1557	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	05/06/2015
D1633	Compressive Strength of Molded Soil-Cement Cylinders	07/22/2024
D2216	Laboratory Determination of Moisture Content of Soils	05/06/2015
D2487	Classification of Soils for Engineering Purposes (Unified Soil Classification System)	07/22/2024
D4318	Determining the Liquid Limit of Soils (Atterberg Limits)	05/06/2015
D4318	Plastic Limit of Soils (Atterberg Limits)	05/06/2015

SCOPE OF AASHTO ACCREDITATION FOR:

Trimat Materials Testing, Inc.
in Durham, North Carolina, USA

Aggregate

Standard:

Accredited Since:

R76	Reducing Samples of Aggregate to Testing Size	06/28/2013
T11	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	01/08/2009
T27	Sieve Analysis of Fine and Coarse Aggregates	01/08/2009
T84	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	01/08/2009
T85	Specific Gravity and Absorption of Coarse Aggregate	01/08/2009
T304	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	01/08/2009
C88	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	09/07/2022
C117	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	05/06/2015
C127	Specific Gravity and Absorption of Coarse Aggregate	05/06/2015
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	05/06/2015
C131	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	07/22/2024
C136	Sieve Analysis of Fine and Coarse Aggregates	05/06/2015
C142	Clay Lumps and Friable Particles in Aggregate	07/22/2024
C702	Reducing Samples of Aggregate to Testing Size	07/22/2024
D2419	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	07/22/2024
D4791	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	04/14/2011
D5821	Determining the Percentage of Fractured Particles in Coarse Aggregate	07/22/2024

SCOPE OF AASHTO ACCREDITATION FOR:

Trimat Materials Testing, Inc.
in Durham, North Carolina, USA

Concrete

Standard:**Accredited Since:**

C31 (Beams)	Making and Curing Concrete Test Specimens in the Field	04/17/2020
C31 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	04/17/2020
C39	Compressive Strength of Cylindrical Concrete Specimens	04/17/2020
C78	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	04/17/2020
C138	Density (Unit Weight), Yield, and Air Content of Concrete	04/17/2020
C143	Slump of Hydraulic Cement Concrete	04/17/2020
C172	Sampling Freshly Mixed Concrete	04/17/2020
C173	Air Content of Freshly Mixed Concrete by the Volumetric Method	08/04/2022
C231	Air Content of Freshly Mixed Concrete by the Pressure Method	04/17/2020
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	04/17/2020
C1064	Temperature of Freshly Mixed Portland Cement Concrete	04/17/2020
C1231 (7000 psi and below)	Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	04/17/2020