

CERTIFICATE OF ACCREDITATION

TRI Environmental, Inc.

in

Austin, Texas, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

TRI Environmental, Inc.
in Austin, Texas, USA

Quality Management System

Standard:

R18 Establishing and Implementing a Quality System for Construction Materials Testing Laboratories

Accredited Since:

02/15/2008

SCOPE OF AASHTO ACCREDITATION FOR:

TRI Environmental, Inc.
in Austin, Texas, USA

Soil

Standard:

Accredited Since:

T215 Permeability of Granular Soils (Constant Head)	03/24/2023
D421 Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	02/15/2008
D698 The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	02/15/2008
D1140 Amount of Material in Soils Finer than the No. 200 (75- μ m) Sieve	02/15/2008
D1557 Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	02/15/2008
D2166 Unconfined Compressive Strength of Cohesive Soil	02/15/2008
D2216 Laboratory Determination of Moisture Content of Soils	02/15/2008
D2435 One-Dimensional Consolidation Properties of Soils Using Incremental Loading	02/15/2008
D2487 Classification of Soils for Engineering Purposes (Unified Soil Classification System)	02/15/2008
D2850 Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression	02/15/2008
D2974 Determination of Organic Content in Soils by Loss on Ignition	02/15/2008
D3080 Direct Shear Test of Soils Under Consolidated Drained Conditions	02/15/2008
D4253 Maximum Index Density and Unit Weight of Soils Using a Vibratory Table	08/30/2016
D4254 Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density	08/30/2016
D4318 Determining the Liquid Limit of Soils (Atterberg Limits)	02/15/2008
D4318 Plastic Limit of Soils (Atterberg Limits)	02/15/2008
D4546 One-Dimensional Swell or Settlement Potential of Cohesive Soils	02/15/2008
D4643 Determination of Water (Moisture) Content of Soil by Microwave Oven Heating	05/13/2014
D4767 Consolidated-Undrained Triaxial Compression Test on Cohesive Soils	02/15/2008
D5084 Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter	02/15/2008
D6913 Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis	08/30/2016
G57 Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method	08/30/2016

SCOPE OF AASHTO ACCREDITATION FOR:

TRI Environmental, Inc.
in Austin, Texas, USA

Rock

Standard:**Accredited Since:**

D3967	Splitting Tensile Strength of Intact Rock Core Specimens	08/30/2016
D4543	Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances	09/18/2018
D4644	Slake Durability of Shales and Weak Rocks	05/13/2014
D5731	Point Load Strength Index of Rock	08/30/2016
D7012 (Method C)	Compressive Strength of Rock Core Specimens (Method C)	05/13/2014
D7012 (Method D)	Compressive Strength of Rock Core Specimens (Method D)	03/24/2023