

CERTIFICATE OF ACCREDITATION

Achievement Engineering Corp.

in

San Jose, California, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

Achievement Engineering Corp.
in San Jose, California, USA

Quality Management System

Standard:

Accredited Since:

R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	01/22/2015
ISO/IEC 17025 (Iron and Steel)	General Requirements for the Competence of Testing and Calibration Laboratories (Limited Scope)	08/03/2021
C1077 (Aggregate)	Laboratories Testing Concrete and Concrete Aggregates	02/19/2015
C1077 (Concrete)	Laboratories Testing Concrete and Concrete Aggregates	04/06/2015
D3666 (Aggregate)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	02/11/2019
D3740 (Soil)	Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction	02/19/2015
E329 (Aggregate)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	02/19/2015
E329 (Concrete)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	01/15/2025
E329 (Soil)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	02/19/2015

SCOPE OF AASHTO ACCREDITATION FOR:

Achievement Engineering Corp.
in San Jose, California, USA

Soil

Standard:

Accredited Since:

R58	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	02/19/2015
T89	Determining the Liquid Limit of Soils (Atterberg Limits)	02/19/2015
T90	Plastic Limit of Soils (Atterberg Limits)	02/19/2015
T180	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	02/19/2015
T265	Laboratory Determination of Moisture Content of Soils	02/19/2015
T310	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	02/19/2015
D421	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	02/19/2015
D1557	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	02/19/2015
D2216	Laboratory Determination of Moisture Content of Soils	02/19/2015
D4318	Determining the Liquid Limit of Soils (Atterberg Limits)	02/19/2015
D4318	Plastic Limit of Soils (Atterberg Limits)	02/19/2015
D6938	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	02/19/2015

SCOPE OF AASHTO ACCREDITATION FOR:

Achievement Engineering Corp.
in San Jose, California, USA

Aggregate

Standard:

Accredited Since:

T11 Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	02/19/2015
T27 Sieve Analysis of Fine and Coarse Aggregates	02/19/2015
T84 Specific Gravity (Relative Density) and Absorption of Fine Aggregate	02/19/2015
T85 Specific Gravity and Absorption of Coarse Aggregate	02/19/2015
C117 Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	02/19/2015
C127 Specific Gravity and Absorption of Coarse Aggregate	02/19/2015
C128 Specific Gravity (Relative Density) and Absorption of Fine Aggregate	02/19/2015
C136 Sieve Analysis of Fine and Coarse Aggregates	02/19/2015

SCOPE OF AASHTO ACCREDITATION FOR:

Achievement Engineering Corp.
in San Jose, California, USA

Iron and Steel

Standard:

Accredited Since:

A615-A370	Carbon-Steel Bars, Deformed and Plain: Tension (Elongation)	07/01/2021
A615-A370	Carbon-Steel Bars, Deformed and Plain: Tension (Ultimate Tensile Strength)	07/01/2021
A615-A370	Carbon-Steel Bars, Deformed and Plain: Tension (Yield Strength)	07/01/2021
A615-E290	Carbon-Steel Bars, Deformed and Plain: Bend Test	07/01/2021
A706-A370	Low Alloy Steel Bars, Deformed and Plain: Tension (Elongation)	07/01/2021
A706-A370	Low Alloy Steel Bars, Deformed and Plain: Tension (Ultimate Tensile Strength)	07/01/2021
A706-A370	Low Alloy Steel Bars, Deformed and Plain: Tension (Yield Strength)	07/01/2021
A706-E290	Low Alloy Steel Bars, Deformed and Plain: Bend Test	07/01/2021
A970-A370	Headed Steel Bars: Tension (Elongation)	07/01/2021
A970-A370	Headed Steel Bars: Tension (Ultimate Tensile Strength)	07/01/2021
A970-A370	Headed Steel Bars: Tension (Yield Strength)	07/01/2021
A416-A1061	Steel Strand, Uncoated Seven-Wire: Tension (Elongation)	01/18/2023
A416-A1061	Steel Strand, Uncoated Seven-Wire: Tension (Ultimate Tensile Strength)	01/18/2023
A416-A1061	Steel Strand, Uncoated Seven-Wire: Tension (Yield Strength)	01/18/2023
A615-A1034	Carbon-Steel Bars, Deformed and Plain: Testing Mechanical Splices	01/09/2024
A706-A1034	Low Alloy Steel Bars, Deformed and Plain: Testing Mechanical Splices	01/09/2024
A615-CT670	Carbon-Steel Bars, Deformed and Plain: Testing Mechanical and Welded Splices	07/01/2021
A706-CT670	Low Alloy Steel Bars, Deformed and Plain: Testing Mechanical and Welded Splices	07/01/2021

SCOPE OF AASHTO ACCREDITATION FOR:

Achievement Engineering Corp.
in San Jose, California, USA

Concrete

Standard:

Accredited Since:

M201	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	01/22/2015
R39	Making and Curing Concrete Test Specimens in the Laboratory	01/15/2025
R60	Sampling Freshly Mixed Concrete	08/30/2021
R100 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	08/30/2021
T22	Compressive Strength of Cylindrical Concrete Specimens	01/22/2015
T119	Slump of Hydraulic Cement Concrete	08/30/2021
T121	Density (Unit Weight), Yield, and Air Content of Concrete	01/22/2015
T152	Air Content of Freshly Mixed Concrete by the Pressure Method	01/22/2015
T196	Air Content of Freshly Mixed Concrete by the Volumetric Method	08/30/2021
T231 (7000 psi and below)	Capping Cylindrical Concrete Specimens	01/15/2025
T309	Temperature of Freshly Mixed Portland Cement Concrete	08/30/2021
C31 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	01/22/2015
C39	Compressive Strength of Cylindrical Concrete Specimens	01/22/2015
C138	Density (Unit Weight), Yield, and Air Content of Concrete	01/22/2015
C143	Slump of Hydraulic Cement Concrete	01/22/2015
C172	Sampling Freshly Mixed Concrete	01/22/2015
C173	Air Content of Freshly Mixed Concrete by the Volumetric Method	08/30/2021
C192	Making and Curing Concrete Test Specimens in the Laboratory	01/15/2025
C231	Air Content of Freshly Mixed Concrete by the Pressure Method	01/22/2015
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	01/22/2015
C617 (7000 psi and below)	Capping Cylindrical Concrete Specimens	01/15/2025
C1064	Temperature of Freshly Mixed Portland Cement Concrete	01/22/2015
C1231 (7000 psi and below)	Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	01/22/2015