

CERTIFICATE OF ACCREDITATION

Inberg Surveying Company, Inc.

in

Cheyenne, Wyoming, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

Inberg Surveying Company, Inc.
in Cheyenne, Wyoming, USA

Quality Management System

Standard:

Accredited Since:

R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	04/01/2019
C1077 (Aggregate)	Laboratories Testing Concrete and Concrete Aggregates	06/24/2019
C1077 (Concrete)	Laboratories Testing Concrete and Concrete Aggregates	07/08/2019
D3666 (Aggregate)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	04/01/2019
D3666 (Asphalt Mixture)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	04/29/2022
D3740 (Soil)	Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction	04/01/2019
E329 (Aggregate)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	04/01/2019
E329 (Asphalt Mixture)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	04/29/2022
E329 (Concrete)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	07/08/2019
E329 (Soil)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	04/01/2019

SCOPE OF AASHTO ACCREDITATION FOR:

Inberg Surveying Company, Inc.
in Cheyenne, Wyoming, USA

Asphalt Mixture

Standard:

Accredited Since:

R68	Preparation of Asphalt Mixtures by Means of the Marshall Apparatus	04/29/2022
R97	Sampling Bituminous Paving Mixtures	04/29/2022
T30	Mechanical Analysis of Extracted Aggregate	04/29/2022
T166	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	04/29/2022
T209	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	04/29/2022
T245	Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus	04/29/2022
T269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	04/29/2022
T275	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens	04/29/2022
T283	Resistance of Compacted Mixtures to Moisture Induced Damage	04/29/2022
T308	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	04/29/2022
T355	Density of Bituminous Concrete In Place by Nuclear Methods	04/29/2022
D979	Sampling Bituminous Paving Mixtures	04/29/2022
D1188	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens	04/29/2022
D2041	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	04/29/2022
D2726	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	04/29/2022
D2950	Density of Bituminous Concrete In Place by Nuclear Methods	04/29/2022
D3203	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	04/29/2022
D3549	Thickness or Height of Compacted Bituminous Paving Mixture Specimens	04/29/2022
D4867	Resistance of Compacted Mixtures to Moisture Induced Damage	04/29/2022
D5444	Mechanical Analysis of Extracted Aggregate	04/29/2022
D6307	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	04/29/2022
D6926	Preparation of Asphalt Mixtures by Means of the Marshall Apparatus	04/29/2022
D6927	Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus	04/29/2022

SCOPE OF AASHTO ACCREDITATION FOR:

Inberg Surveying Company, Inc.
in Cheyenne, Wyoming, USA

Soil

Standard:

Accredited Since:

R58	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	04/01/2019
T88	Particle Size Analysis of Soils by Hydrometer	04/29/2022
T89	Determining the Liquid Limit of Soils (Atterberg Limits)	04/01/2019
T90	Plastic Limit of Soils (Atterberg Limits)	04/01/2019
T99	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	04/01/2019
T180	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	04/01/2019
T191	Density of Soil In-Place by the Sand Cone Method	04/29/2022
T265	Laboratory Determination of Moisture Content of Soils	04/01/2019
T310	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	04/01/2019
D421	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	04/01/2019
D422	Particle Size Analysis of Soils by Hydrometer	04/29/2022
D698	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	04/01/2019
D1140	Amount of Material in Soils Finer than the No. 200 (75- μ m) Sieve	04/29/2022
D1556	Density of Soil In-Place by the Sand Cone Method	04/29/2022
D1557	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	04/01/2019
D2216	Laboratory Determination of Moisture Content of Soils	04/01/2019
D2487	Classification of Soils for Engineering Purposes (Unified Soil Classification System)	04/29/2022
D4318	Determining the Liquid Limit of Soils (Atterberg Limits)	04/01/2019
D4318	Plastic Limit of Soils (Atterberg Limits)	04/01/2019
D6938	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	04/01/2019

SCOPE OF AASHTO ACCREDITATION FOR:

Inberg Surveying Company, Inc.
in Cheyenne, Wyoming, USA

Aggregate

Standard:

Accredited Since:

R76	Reducing Samples of Aggregate to Testing Size	04/01/2019
R90	Sampling Aggregate	04/29/2022
T11	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	04/01/2019
T27	Sieve Analysis of Fine and Coarse Aggregates	04/01/2019
T37	Sieve Analysis of Mineral Filler for Road and Paving Materials	04/29/2022
T84	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	04/01/2019
T85	Specific Gravity and Absorption of Coarse Aggregate	04/01/2019
T176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	04/01/2019
T255	Total Moisture Content of Aggregate by Drying	04/01/2019
C117	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	04/01/2019
C127	Specific Gravity and Absorption of Coarse Aggregate	04/01/2019
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	04/01/2019
C136	Sieve Analysis of Fine and Coarse Aggregates	04/01/2019
C566	Total Moisture Content of Aggregate by Drying	04/01/2019
C702	Reducing Samples of Aggregate to Testing Size	04/01/2019
D75	Sampling Aggregate	04/29/2022
D546	Sieve Analysis of Mineral Filler for Road and Paving Materials	04/29/2022
D2419	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	04/01/2019

SCOPE OF AASHTO ACCREDITATION FOR:

Inberg Surveying Company, Inc.
in Cheyenne, Wyoming, USA

Concrete

Standard:

Accredited Since:

M201	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	09/25/2023
R60	Sampling Freshly Mixed Concrete	09/25/2023
R100 (Beams)	Making and Curing Concrete Test Specimens in the Field	09/25/2023
R100 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	09/25/2023
T22	Compressive Strength of Cylindrical Concrete Specimens	09/25/2023
T97	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	09/25/2023
T119	Slump of Hydraulic Cement Concrete	09/25/2023
T121	Density (Unit Weight), Yield, and Air Content of Concrete	09/25/2023
T152	Air Content of Freshly Mixed Concrete by the Pressure Method	09/25/2023
T309	Temperature of Freshly Mixed Portland Cement Concrete	09/25/2023
C31 (Beams)	Making and Curing Concrete Test Specimens in the Field	07/08/2019
C31 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	07/08/2019
C39	Compressive Strength of Cylindrical Concrete Specimens	07/08/2019
C78	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	07/08/2019
C138	Density (Unit Weight), Yield, and Air Content of Concrete	07/08/2019
C143	Slump of Hydraulic Cement Concrete	07/08/2019
C172	Sampling Freshly Mixed Concrete	07/08/2019
C231	Air Content of Freshly Mixed Concrete by the Pressure Method	07/08/2019
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	07/08/2019
C1064	Temperature of Freshly Mixed Portland Cement Concrete	07/08/2019
C1231 (7000 psi and below)	Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	07/08/2019