

CERTIFICATE OF ACCREDITATION

Blankenship Asphalt Tech and Training, PLLC

in

Richmond, Kentucky, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

Blankenship Asphalt Tech and Training, PLLC
in Richmond, Kentucky, USA

Quality Management System

Standard:

Accredited Since:

R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	03/19/2021
D3666 (Aggregate)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	08/29/2024
D3666 (Asphalt Binder)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	08/29/2024
D3666 (Asphalt Mixture)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	03/19/2021

SCOPE OF AASHTO ACCREDITATION FOR:

Blankenship Asphalt Tech and Training, PLLC
in Richmond, Kentucky, USA

Asphalt Binder

Standard:

Accredited Since:

R28	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel	05/19/2022
R29	Grading or Verifying the Performance Grade of an Asphalt Binder	05/19/2022
T44	Solubility of Asphalt Materials in Trichloroethylene	08/29/2024
T53	Softening Point of Bitumen (Ring-and-Ball Apparatus)	05/19/2022
T228	Specific Gravity (Relative Density) of Asphalt Cement	05/19/2022
T240	Rolling Thin-Film Oven Testing	05/19/2022
T313	Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)	05/19/2022
T315	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)	05/19/2022
T316	Viscosity Determination of Asphalt Binder Using Rotational Viscometer	08/29/2024
T350	Multiple Stress Creep and Recovery (MSCR)	05/19/2022
D36	Softening Point of Bitumen (Ring-and-Ball Apparatus)	05/19/2022
D70	Specific Gravity (Relative Density) of Asphalt Cement	05/19/2022
D2042	Solubility of Asphalt Materials in Trichloroethylene	08/29/2024
D2872	Rolling Thin-Film Oven Testing	05/19/2022
D4402	Viscosity Determination of Asphalt Binder Using Rotational Viscometer	08/29/2024
D6521	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel	05/19/2022
D6648	Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)	05/19/2022
D7175	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)	05/19/2022
D7405	Multiple Stress Creep and Recovery (MSCR)	05/19/2022
D7643	Determining the Continuous Grading Temperatures and Continuous Grades for PG Graded Asphalt Binders	05/19/2022

SCOPE OF AASHTO ACCREDITATION FOR:

Blankenship Asphalt Tech and Training, PLLC
in Richmond, Kentucky, USA

Asphalt Mixture

Standard:

Accredited Since:

R30	Mixture Conditioning of Hot Mix Asphalt (HMA)	03/19/2021
R47	Reducing Samples of Hot-Mix Asphalt to Testing Size	03/19/2021
R79	Rapid Drying of Compacted Asphalt Mixture Specimens Using Vacuum Drying Apparatus	08/29/2024
R97	Sampling Bituminous Paving Mixtures	03/19/2021
T30	Mechanical Analysis of Extracted Aggregate	05/19/2022
T166	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	03/19/2021
T209	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	03/19/2021
T269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	03/19/2021
T283	Resistance of Compacted Mixtures to Moisture Induced Damage	03/19/2021
T312	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	03/19/2021
T324	Hamburg Wheel-Track Testing of Compacted Hot-Mix Asphalt (HMA)	03/19/2021
T329	Moisture Content of Hot-Mix Asphalt (HMA) by Oven Method	08/29/2024
T331	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	03/19/2021
D979	Sampling Bituminous Paving Mixtures	03/19/2021
D2041	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	03/19/2021
D2726	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	03/19/2021
D3203	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	03/19/2021
D3549	Thickness or Height of Compacted Bituminous Paving Mixture Specimens	03/19/2021
D4867	Resistance of Compacted Mixtures to Moisture Induced Damage	03/19/2021
D5404	Recovery of Asphalt from Solution Using the Rotavapor Apparatus	08/29/2024
D5444	Mechanical Analysis of Extracted Aggregate	05/19/2022
D6752	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	03/19/2021
D6925	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	03/19/2021

SCOPE OF AASHTO ACCREDITATION FOR:

Blankenship Asphalt Tech and Training, PLLC
in Richmond, Kentucky, USA

Asphalt Mixture (Continued)

Standard:**Accredited Since:**

D6931 Indirect Tensile Strength (IDT)	03/19/2021
D7227 Rapid Drying of Compacted Asphalt Mixture Specimens Using Vacuum Drying Apparatus	03/19/2021
D8159 Automated Extraction of Asphalt Binder from Asphalt Mixtures	05/19/2022
D8225 Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature	05/19/2022

SCOPE OF AASHTO ACCREDITATION FOR:

Blankenship Asphalt Tech and Training, PLLC
in Richmond, Kentucky, USA

Aggregate

Standard:

Accredited Since:

R76	Reducing Samples of Aggregate to Testing Size	03/19/2021
R90	Sampling Aggregate	03/19/2021
T11	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	03/19/2021
T27	Sieve Analysis of Fine and Coarse Aggregates	03/19/2021
T84	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	03/19/2021
T85	Specific Gravity and Absorption of Coarse Aggregate	03/19/2021
T176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	05/19/2022
T255	Total Moisture Content of Aggregate by Drying	08/29/2024
T304	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	05/19/2022
T330	The Qualitative Detection of Harmful Clays of the Smectite Group in Aggregates Using Methylene Blue	08/29/2024
T335	Determining the Percentage of Fractured Particles in Coarse Aggregate	05/19/2022
C117	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	03/19/2021
C127	Specific Gravity and Absorption of Coarse Aggregate	03/19/2021
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	03/19/2021
C136	Sieve Analysis of Fine and Coarse Aggregates	03/19/2021
C566	Total Moisture Content of Aggregate by Drying	08/29/2024
C702	Reducing Samples of Aggregate to Testing Size	03/19/2021
C837	The Qualitative Detection of Harmful Clays of the Smectite Group in Aggregates Using Methylene Blue	08/29/2024
C1252	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	05/19/2022
D75	Sampling Aggregate	03/19/2021
D2419	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	05/19/2022
D4791	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	05/19/2022
D5821	Determining the Percentage of Fractured Particles in Coarse Aggregate	05/19/2022