

CERTIFICATE OF ACCREDITATION

FHWA-Western Federal Lands Highway Division

in

Vancouver, Washington, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division
in Vancouver, Washington, USA

Quality Management System

Standard:

R18 Establishing and Implementing a Quality System for Construction Materials Testing Laboratories

Accredited Since:

12/01/1989

ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories

07/09/2004

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division in Vancouver, Washington, USA

Asphalt Binder

Standard:**Accredited Since:**

R28	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel	03/15/2000
T49	Penetration of Original Sample of Asphalt Cement	03/15/2000
T51	Ductility of Bituminous Materials	03/15/2000
T240	Rolling Thin-Film Oven Testing	03/15/2000
T301	Elastic Recovery Test of Bituminous Materials by Means of a Ductilometer	01/28/2011
T313	Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)	03/15/2000
T315	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)	03/15/2000
T316	Viscosity Determination of Asphalt Binder Using Rotational Viscometer	03/15/2000
T350	Multiple Stress Creep and Recovery (MSCR)	06/11/2020
D7405	Multiple Stress Creep and Recovery (MSCR)	01/28/2011
D7553	Solubility of Asphalt Materials in N-Propyl Bromide	03/12/2013

SCOPE OF AASHTO ACCREDITATION FOR:
FHWA-Western Federal Lands Highway Division
in Vancouver, Washington, USA

Emulsified Asphalt

Standard:

Accredited Since:

T59 Cement Mixing	04/01/2002
T59 Particle Charge	04/01/2002
T59 Residue by Distillation	04/01/2002
T59 Residue by Evaporation	06/11/2020
T59 Sieve Test	04/01/2002

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division in Vancouver, Washington, USA

Asphalt Mixture

Standard:**Accredited Since:**

R47	Reducing Samples of Hot-Mix Asphalt to Testing Size	01/28/2011
T30	Mechanical Analysis of Extracted Aggregate	12/01/1989
T166	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	12/01/1989
T209	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	12/01/1989
T269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	12/01/1989
T275	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens	12/01/1989
T308	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	12/01/1989
T312	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	12/01/1989
T329	Moisture Content of Hot-Mix Asphalt (HMA) by Oven Method	12/01/1989
T331	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	06/11/2020
D1188	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens	10/16/2017
D2041	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	12/01/1989
D2726	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	12/01/1989
D3203	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	12/01/1989
D5444	Mechanical Analysis of Extracted Aggregate	12/01/1989
D6307	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	12/01/1989
D6752	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	06/11/2020
D6925	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	12/01/1989

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division in Vancouver, Washington, USA

Soil

Standard:

Accredited Since:

R58	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	12/01/1989
R74	Wet Preparation of Disturbed Soil Samples for Test	12/01/1989
T88	Particle Size Analysis of Soils by Hydrometer	12/01/1989
T89	Determining the Liquid Limit of Soils (Atterberg Limits)	12/01/1989
T90	Plastic Limit of Soils (Atterberg Limits)	12/01/1989
T99	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	12/01/1989
T100	Specific Gravity of Soils	12/01/1989
T180	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	12/01/1989
T190	Resistance R-Value and Expansion Pressure of Compacted Soils	12/01/1989
T208	Unconfined Compressive Strength of Cohesive Soil	12/01/1989
T216	One-Dimensional Consolidation Properties of Soils Using Incremental Loading	06/11/2020
T236	Direct Shear Test of Soils Under Consolidated Drained Conditions	03/12/2013
T265	Laboratory Determination of Moisture Content of Soils	12/01/1989
T267	Determination of Organic Content in Soils by Loss on Ignition	03/12/2013
T288	Minimum Soil Resistivity	10/16/2017
T289	pH of Soils for Corrosion Testing	10/16/2017
D421	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	12/01/1989
D422	Particle Size Analysis of Soils by Hydrometer	12/01/1989
D698	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	12/01/1989
D1140	Amount of Material in Soils Finer than the No. 200 (75- μ m) Sieve	12/01/1989
D1557	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	12/01/1989
D2166	Unconfined Compressive Strength of Cohesive Soil	12/01/1989
D2216	Laboratory Determination of Moisture Content of Soils	12/01/1989

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division in Vancouver, Washington, USA

Soil (Continued)

Standard:**Accredited Since:**

D2435 One-Dimensional Consolidation Properties of Soils Using Incremental Loading	06/11/2020
D2487 Classification of Soils for Engineering Purposes (Unified Soil Classification System)	12/01/1989
D2844 Resistance R-Value and Expansion Pressure of Compacted Soils	12/01/1989
D2974 Determination of Organic Content in Soils by Loss on Ignition	03/12/2013
D4318 Determining the Liquid Limit of Soils (Atterberg Limits)	12/01/1989
D4318 Plastic Limit of Soils (Atterberg Limits)	10/16/2017
D4972 pH Testing of Soils	03/12/2013

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division in Vancouver, Washington, USA

Rock

Standard:

D5731	Point Load Strength Index of Rock	06/11/2020
D7012 (Method C without D4543 sample preparation)	Compressive Strength of Rock Core Specimens (Method C without D4543 preparation)	06/11/2020

Accredited Since:

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division
in Vancouver, Washington, USA

Aggregate

Standard:

Accredited Since:

R76	Reducing Samples of Aggregate to Testing Size	12/01/1989
T11	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	12/01/1989
T19	Bulk Density ("Unit Weight") and Voids in Aggregate	12/01/1989
T21	Organic Impurities in Fine Aggregates for Concrete	12/01/1989
T27	Sieve Analysis of Fine and Coarse Aggregates	12/01/1989
T37	Sieve Analysis of Mineral Filler for Road and Paving Materials	12/01/1989
T84	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	12/01/1989
T85	Specific Gravity and Absorption of Coarse Aggregate	12/01/1989
T96	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	12/01/1989
T104	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	12/01/1989
T112	Clay Lumps and Friable Particles in Aggregate	12/01/1989
T176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	12/01/1989
T210	Aggregate Durability Index	12/01/1989
T255	Total Moisture Content of Aggregate by Drying	12/01/1989
T304	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	12/01/1989
T335	Determining the Percentage of Fractured Particles in Coarse Aggregate	03/08/2016
C29	Bulk Density ("Unit Weight") and Voids in Aggregate	12/01/1989
C40	Organic Impurities in Fine Aggregates for Concrete	12/01/1989
C88	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	12/01/1989
C117	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	12/01/1989
C127	Specific Gravity and Absorption of Coarse Aggregate	12/01/1989
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	12/01/1989
C131	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	12/01/1989

SCOPE OF AASHTO ACCREDITATION FOR:

FHWA-Western Federal Lands Highway Division in Vancouver, Washington, USA

Aggregate (Continued)

Standard:**Accredited Since:**

C136 Sieve Analysis of Fine and Coarse Aggregates	12/01/1989
C142 Clay Lumps and Friable Particles in Aggregate	12/01/1989
C566 Total Moisture Content of Aggregate by Drying	12/01/1989
C702 Reducing Samples of Aggregate to Testing Size	12/01/1989
C1252 Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	12/01/1989
D546 Sieve Analysis of Mineral Filler for Road and Paving Materials	12/01/1989
D2419 Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	12/01/1989
D3744 Aggregate Durability Index	12/01/1989
D4791 Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	12/01/1989
D5821 Determining the Percentage of Fractured Particles in Coarse Aggregate	12/01/1989