

CERTIFICATE OF ACCREDITATION

Construction Testing Laboratories, Inc.

in

Puyallup, Washington, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Quality Management System

Standard:

Accredited Since:

R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	01/30/2026
C1077 (Aggregate)	Laboratories Testing Concrete and Concrete Aggregates	01/30/2026
C1077 (Concrete)	Laboratories Testing Concrete and Concrete Aggregates	01/30/2026
D3666 (Asphalt Mixture)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	01/30/2026
D3740 (Soil)	Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction	01/30/2026
E329 (Aggregate)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	01/30/2026
E329 (Asphalt Mixture)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	01/30/2026
E329 (Concrete)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	01/30/2026
E329 (Soil)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Asphalt Mixture

Standard:

Accredited Since:

R30	Mixture Conditioning of Hot Mix Asphalt (HMA)	01/30/2026
R47	Reducing Samples of Hot-Mix Asphalt to Testing Size	01/30/2026
R97	Sampling Bituminous Paving Mixtures	01/30/2026
T30	Mechanical Analysis of Extracted Aggregate	01/30/2026
T166	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	01/30/2026
T209	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	01/30/2026
T269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	01/30/2026
T308	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	01/30/2026
T312	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	01/30/2026
T324	Hamburg Wheel-Track Testing of Compacted Hot-Mix Asphalt (HMA)	01/30/2026
T329	Moisture Content of Hot-Mix Asphalt (HMA) by Oven Method	01/30/2026
T331	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	01/30/2026
T355	Density of Bituminous Concrete In Place by Nuclear Methods	01/30/2026
D979	Sampling Bituminous Paving Mixtures	01/30/2026
D2041	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	01/30/2026
D2726	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	01/30/2026
D2950	Density of Bituminous Concrete In Place by Nuclear Methods	01/30/2026
D3203	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	01/30/2026
D3549	Thickness or Height of Compacted Bituminous Paving Mixture Specimens	01/30/2026
D5444	Mechanical Analysis of Extracted Aggregate	01/30/2026
D6307	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	01/30/2026
D6752	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	01/30/2026
D6925	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Asphalt Mixture (Continued)

Standard:**Accredited Since:**

D6926 Preparation of Asphalt Mixtures by Means of the Marshall Apparatus

01/30/2026

D6927 Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus

01/30/2026

D6931 Indirect Tensile Strength (IDT)

01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Soil

Standard:

Accredited Since:

R58	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	01/30/2026
T88	Particle Size Analysis of Soils by Hydrometer	01/30/2026
T89	Determining the Liquid Limit of Soils (Atterberg Limits)	01/30/2026
T90	Plastic Limit of Soils (Atterberg Limits)	01/30/2026
T99	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	01/30/2026
T100	Specific Gravity of Soils	01/30/2026
T180	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	01/30/2026
T265	Laboratory Determination of Moisture Content of Soils	01/30/2026
T310	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	01/30/2026
D421	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	01/30/2026
D422	Particle Size Analysis of Soils by Hydrometer	01/30/2026
D698	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	01/30/2026
D854	Specific Gravity of Soils	01/30/2026
D1140	Amount of Material in Soils Finer than the No. 200 (75- μ m) Sieve	01/30/2026
D1557	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	01/30/2026
D2216	Laboratory Determination of Moisture Content of Soils	01/30/2026
D4318	Determining the Liquid Limit of Soils (Atterberg Limits)	01/30/2026
D4318	Plastic Limit of Soils (Atterberg Limits)	01/30/2026
D6938	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Aggregate

Standard:**Accredited Since:**

R76	Reducing Samples of Aggregate to Testing Size	01/30/2026
R90	Sampling Aggregate	01/30/2026
T11	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	01/30/2026
T19	Bulk Density ("Unit Weight") and Voids in Aggregate	01/30/2026
T21	Organic Impurities in Fine Aggregates for Concrete	01/30/2026
T27	Sieve Analysis of Fine and Coarse Aggregates	01/30/2026
T84	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	01/30/2026
T85	Specific Gravity and Absorption of Coarse Aggregate	01/30/2026
T96	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	01/30/2026
T104	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	01/30/2026
T112	Clay Lumps and Friable Particles in Aggregate	01/30/2026
T113 (Coarse Aggregate Only)	Lightweight Pieces in Aggregate (Coarse Aggregate Only)	01/30/2026
T176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	01/30/2026
T255	Total Moisture Content of Aggregate by Drying	01/30/2026
T304	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	01/30/2026
T335	Determining the Percentage of Fractured Particles in Coarse Aggregate	01/30/2026
C29	Bulk Density ("Unit Weight") and Voids in Aggregate	01/30/2026
C40	Organic Impurities in Fine Aggregates for Concrete	01/30/2026
C88	Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate	01/30/2026
C117	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	01/30/2026
C123 (Coarse Aggregate Only)	Lightweight Pieces in Aggregate (Coarse Aggregate Only)	01/30/2026
C127	Specific Gravity and Absorption of Coarse Aggregate	01/30/2026
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Aggregate (Continued)

Standard:**Accredited Since:**

C131	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	01/30/2026
C136	Sieve Analysis of Fine and Coarse Aggregates	01/30/2026
C142	Clay Lumps and Friable Particles in Aggregate	01/30/2026
C566	Total Moisture Content of Aggregate by Drying	01/30/2026
C702	Reducing Samples of Aggregate to Testing Size	01/30/2026
C1252	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	01/30/2026
D75	Sampling Aggregate	01/30/2026
D2419	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	01/30/2026
D4791	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	01/30/2026
D5821	Determining the Percentage of Fractured Particles in Coarse Aggregate	01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Sprayed Fire-Resistive Material

Standard:

E605 Thickness and Density of Sprayed Fire-Resistive Material(SFRM) Applied to Structural Members

Accredited Since:

01/30/2026

E736 Cohesion/Adhesion of Sprayed Fire-Resistive MaterialsApplied to Structural Members

01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Concrete

Standard:

Accredited Since:

M201	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	01/30/2026
R60	Sampling Freshly Mixed Concrete	01/30/2026
R100 (Beams)	Making and Curing Concrete Test Specimens in the Field	01/30/2026
R100 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	01/30/2026
T22	Compressive Strength of Cylindrical Concrete Specimens	01/30/2026
T97	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	01/30/2026
T119	Slump of Hydraulic Cement Concrete	01/30/2026
T121	Density (Unit Weight), Yield, and Air Content of Concrete	01/30/2026
T152	Air Content of Freshly Mixed Concrete by the Pressure Method	01/30/2026
T231 (7000 psi and below)	Capping Cylindrical Concrete Specimens	01/30/2026
T309	Temperature of Freshly Mixed Portland Cement Concrete	01/30/2026
C31 (Beams)	Making and Curing Concrete Test Specimens in the Field	01/30/2026
C31 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	01/30/2026
C39	Compressive Strength of Cylindrical Concrete Specimens	01/30/2026
C78	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	01/30/2026
C138	Density (Unit Weight), Yield, and Air Content of Concrete	01/30/2026
C143	Slump of Hydraulic Cement Concrete	01/30/2026
C172	Sampling Freshly Mixed Concrete	01/30/2026
C231	Air Content of Freshly Mixed Concrete by the Pressure Method	01/30/2026
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	01/30/2026
C617 (7000 psi and below)	Capping Cylindrical Concrete Specimens	01/30/2026
C1064	Temperature of Freshly Mixed Portland Cement Concrete	01/30/2026
C1231 (7000 psi and below)	Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	01/30/2026

SCOPE OF AASHTO ACCREDITATION FOR:

Construction Testing Laboratories, Inc.
in Puyallup, Washington, USA

Masonry

Standard:**Accredited Since:**

C511 Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes

01/30/2026

C1019 Sampling and Testing Grout

01/30/2026

C1314 Compressive Strength of Masonry Prisms

01/30/2026

C1552 Capping Concrete Masonry Units, Related Units and Masonry Prisms for Compression Testing

01/30/2026