

CERTIFICATE OF ACCREDITATION

Connecticut Advanced Pavement Laboratory

in

Storrs, Connecticut, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

Jim Tymon,
AASHTO Executive Director

Matt Linneman
AASHTO COMP Chair

SCOPE OF AASHTO ACCREDITATION FOR:

Connecticut Advanced Pavement Laboratory
in Storrs, Connecticut, USA

Quality Management System

Standard:**Accredited Since:**

R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	05/01/2000
D3666 (Aggregate)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	01/10/2011
D3666 (Asphalt Binder)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	01/10/2011
D3666 (Asphalt Mixture)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	01/10/2011

SCOPE OF AASHTO ACCREDITATION FOR:

Connecticut Advanced Pavement Laboratory
in Storrs, Connecticut, USA

Asphalt Binder

Standard:

Accredited Since:

R28	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel	05/01/2000
R29	Grading or Verifying the Performance Grade of an Asphalt Binder	09/30/2015
T240	Rolling Thin-Film Oven Testing	05/01/2000
T313	Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)	05/01/2000
T315	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)	05/01/2000
T316	Viscosity Determination of Asphalt Binder Using Rotational Viscometer	05/01/2000
T350	Multiple Stress Creep and Recovery (MSCR)	02/27/2018
D2872	Rolling Thin-Film Oven Testing	05/01/2000
D4402	Viscosity Determination of Asphalt Binder Using Rotational Viscometer	05/01/2000
D6521	Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel	05/01/2000
D6648	Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)	05/01/2000
D7175	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)	05/01/2000
D7405	Multiple Stress Creep and Recovery (MSCR)	07/22/2011
D7643	Determining the Continuous Grading Temperatures and Continuous Grades for PG Graded Asphalt Binders	09/30/2015

SCOPE OF AASHTO ACCREDITATION FOR:

Connecticut Advanced Pavement Laboratory
in Storrs, Connecticut, USA

Asphalt Mixture

Standard:

Accredited Since:

R30	Mixture Conditioning of Hot Mix Asphalt (HMA)	09/30/2015
R35	Superpave Volumetric Design for Hot Mix Asphalt (HMA)	01/26/2026
R47	Reducing Samples of Hot-Mix Asphalt to Testing Size	07/22/2011
R79	Rapid Drying of Compacted Asphalt Mixture Specimens Using Vacuum Drying Apparatus	10/24/2023
R97	Sampling Bituminous Paving Mixtures	10/24/2023
R121	Long Term Laboratory Conditioning of Asphalt Mixtures	01/26/2026
T30	Mechanical Analysis of Extracted Aggregate	05/01/2000
T166	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	05/01/2000
T209	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	05/01/2000
T269	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	05/01/2000
T283	Resistance of Compacted Mixtures to Moisture Induced Damage	05/01/2000
T305	Draindown Characteristics of HMA	09/30/2015
T308	Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	09/30/2015
T312	Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	05/01/2000
T324	Hamburg Wheel-Track Testing of Compacted Hot-Mix Asphalt (HMA)	05/01/2000
T331	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	05/01/2000
T340	Determining Rutting Susceptibility of Hot Mix Asphalt (HMA) Using the Asphalt Pavement Analyzer (APA)	10/24/2023
D979	Sampling Bituminous Paving Mixtures	09/30/2015
D2041	Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	05/01/2000
D2726	Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	05/01/2000
D3203	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	05/01/2000
D3549	Thickness or Height of Compacted Bituminous Paving Mixture Specimens	11/23/2020
D3665	Random Sampling of Construction Materials	10/24/2023

SCOPE OF AASHTO ACCREDITATION FOR:

Connecticut Advanced Pavement Laboratory
in Storrs, Connecticut, USA

Asphalt Mixture (Continued)

Standard:**Accredited Since:**

D4867 Resistance of Compacted Mixtures to Moisture Induced Damage	05/01/2000
D5444 Mechanical Analysis of Extracted Aggregate	05/01/2000
D6307 Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	09/30/2015
D6390 Draindown Characteristics of HMA	09/30/2015
D6752 Bulk Specific Gravity of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	05/01/2000
D6925 Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	05/01/2000
D7227 Rapid Drying of Compacted Asphalt Mixture Specimens Using Vacuum Drying Apparatus	11/23/2020
D8225 Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature	10/24/2023

SCOPE OF AASHTO ACCREDITATION FOR:

Connecticut Advanced Pavement Laboratory
in Storrs, Connecticut, USA

Aggregate

Standard:**Accredited Since:**

R76	Reducing Samples of Aggregate to Testing Size	08/15/2000
R90	Sampling Aggregate	03/27/2013
T11	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	08/15/2000
T27	Sieve Analysis of Fine and Coarse Aggregates	08/15/2000
T84	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	08/15/2000
T85	Specific Gravity and Absorption of Coarse Aggregate	08/15/2000
T96	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	08/15/2000
T100 (Mineral Filler)	Specific Gravity of Mineral Filler on Asphalt Mixture Designs	01/26/2026
T112	Clay Lumps and Friable Particles in Aggregate	08/15/2000
T176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	08/15/2000
T255	Total Moisture Content of Aggregate by Drying	08/15/2000
T304	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	08/15/2000
T335	Determining the Percentage of Fractured Particles in Coarse Aggregate	03/27/2013
C117	Materials Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing	08/15/2000
C127	Specific Gravity and Absorption of Coarse Aggregate	08/15/2000
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	08/15/2000
C131	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	08/15/2000
C136	Sieve Analysis of Fine and Coarse Aggregates	08/15/2000
C142	Clay Lumps and Friable Particles in Aggregate	08/15/2000
C535	Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	02/27/2018
C566	Total Moisture Content of Aggregate by Drying	08/15/2000
C702	Reducing Samples of Aggregate to Testing Size	08/15/2000
C1252	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	08/15/2000

SCOPE OF AASHTO ACCREDITATION FOR:

Connecticut Advanced Pavement Laboratory
in Storrs, Connecticut, USA

Aggregate (Continued)

Standard:**Accredited Since:**

D75	Sampling Aggregate	03/27/2013
D2419	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	08/15/2000
D4791	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	08/15/2000
D5821	Determining the Percentage of Fractured Particles in Coarse Aggregate	08/15/2000